On generalized fixed sequence procedures for controlling the FWER.
نویسندگان
چکیده
Testing a sequence of pre-ordered hypotheses to decide which of these can be rejected or accepted while controlling the familywise error rate (FWER) is of importance in many scientific studies such as clinical trials. In this paper, we first introduce a generalized fixed sequence procedure whose critical values are defined by using a function of the numbers of rejections and acceptances, and which allows follow-up hypotheses to be tested even if some earlier hypotheses are not rejected. We then construct the least favorable configuration for this generalized fixed sequence procedure and present a sufficient condition for the FWER control under arbitrary dependence. Based on the condition, we develop three new generalized fixed sequence procedures controlling the FWER under arbitrary dependence. We also prove that each generalized fixed sequence procedure can be described as a specific closed testing procedure. Through simulation studies and a clinical trial example, we compare the power performance of these proposed procedures with those of the existing FWER controlling procedures. Finally, when the pairwise joint distributions of the true null p-values are known, we further improve these procedures by incorporating pairwise correlation information while maintaining the control of the FWER. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Stepup Procedures Controlling Generalized Fwer and Generalized Fdr
In many applications of multiple hypothesis testing where more than one false rejection can be tolerated, procedures controlling error rates measuring at least k false rejections, instead of at least one, for some fixed k ≥ 1 can potentially increase the ability of a procedure to detect false null hypotheses. The k-FWER, a generalized version of the usual familywise error rate (FWER), is such a...
متن کاملStepup Procedures Controlling Generalized Fwer and Generalized Fdr1 by Sanat K. Sarkar
In many applications of multiple hypothesis testing where more than one false rejection can be tolerated, procedures controlling error rates measuring at least k false rejections, instead of at least one, for some fixed k ≥ 1 can potentially increase the ability of a procedure to detect false null hypotheses. The k-FWER, a generalized version of the usual familywise error rate (FWER), is such a...
متن کاملOn stepwise control of the generalized familywise error rate
A classical approach for dealing with a multiple testing problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of at least one false rejection. In many applications, one might be willing to tolerate more than one false rejection provided the number of such cases is controlled, thereby increasing the ability of a procedure to detect false n...
متن کاملSome Generalized Fwer Procedures
In a multiple testing problem where one is willing to tolerate a few false rejections, procedure controlling the familywise error rate (FWER) can potentially be improved in terms of its ability to detect false null hypotheses by generalizing it to control the k-FWER, the probability of falsely rejecting at least k null hypotheses, for some fixed k > 1. Simes’ test for testing the intersection n...
متن کاملStepup Procedures for Control of Generalizations of the Familywise Error Rate
Consider the multiple testing problem of testing null hypotheses H1, . . . ,Hs. A classical approach to dealing with the multiplicity problem is to restrict attention to procedures that control the familywise error rate (FWER), the probability of even one false rejection. But if s is large, control of the FWER is so stringent that the ability of a procedure that controls the FWER to detect fals...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics in medicine
دوره 34 30 شماره
صفحات -
تاریخ انتشار 2015